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The dependence of XI(3) invariant measure on the real and imaginary parts of the X7(3) 
matrtx trace is derrved and used to construct an algorithm for random selection of S’(/(3) step- 
pmg matrices for Monte Carlo lattice gauge calculations. The algornhm generates an ensem- 
ble of trace-biased, but otherwise mvariantly distributed SU(3) matrices matched to 
prescrtbed values of the trace average and trace standard deviatron, and depends on a 
prescribed shape parameter for added flexrbihty. 

I. INTRODUCTION 

The formulas for ,SU(n) invariant measure and SU(M) matrices in terms of polar 
parameters [ 1 ] are applied here to obtain a random sampling algorithm for 5743) 
stepping matrices for Monte Carlo lattice gauge calculations of quantum 
chromodynamics. The algorithm’s purpose is to speed up the calculation of ther- 
malized and uncorrelated ensembles of configurations of matrices attached to the 
lattice links. 

The matrices would be sampled from a product distribution; the first factor is the 
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invariant (Haar) measure for SU(3), and the second biases the sample in the 
neighborhood of the unit matrix I. The degree of bias depends on adjustable 
parameters which would be optimized in numerical experiments on the system 
under study. The goal is to minimize the number of Monte Carlo sweeps required 
to generate thermalized and uncorrelated lattice configurations and so to minimize 
the computer time needed to generate a usable ensemble of configurations. 

Numerical calculations of decorrelation rates and other criteria for this algorithm 
and comparisons with other algorithms will be described in a subsequent paper. 

Let A be an 5743) matrix. Its distance d(A, I) from the identity is represented 
conveniently by the trace metric 

[d(A, I)]’ = trace(d - I)(A + -I) = trace(21- A - Ai) = 2(3 - t) 

where t = Real(trace A). Thus, biasing A to the neighborhood of I may be done by 
biasing t to a neighborhood of 3. 

Let A be represented in diagonal form: 

A = v- ‘(p, w) m.0) up, w). 

Here D(0) is the diagonal matrix of eigenvalues exp(i0,), i= 1, 2, 3, in any order. 
The eigenangles satisfy 

8, +02+e3=2m. (1) 

The diagonalizing matrix V can be taken as an SU(3) matrix parameterized by 
three radial variables p2r, p31, ~32 (or equivalently, the complementary variables 
p2r = (1 -p$1)1/2, etc.) and three phase variables e2r, ti3r, 1c/32. This amounts to a 
specialization of V by the conditions det V= +l, VI1 and YX3 = real. The invariant 
W(3) measure &(A) factors into 

40) = dV(P, VI Qw8, 

where, up to an overall constant, 

NP, VI = ~(P2,)2~(P3,)4~(P32)2~~,, 9 d$x 2 d$x 

and 

d;1(8)= sin (e’-e’) sin (e’-e,’ sin (‘,-‘l) 2 de de 
2 2 2 1 2. 

To generate random matrices A, one would: 

(a) Generate p and $ variables distributed according to dv(p, w) and con- 
struct v according to the rules of [ 11. For the explicit algorithm, see Section IV. 

(b) Transform dA(B) from angle variables to trace variables and introduce a 
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bias factor as a function of t. The trace variables will be generated randomly and 
the 8, calculated from them. These are the tasks of the following sections. 

(c) Finally, calculate A from A = FID(B) V. 

II. TRACE SPACE FOR SU(3) 

We shall map the manifold of eigenvalues 8, to trace space. Take 8, and %2 as 
independent variables, with %, dependent through (1). Triplets (8,) %,, %,) and 
(%;, %;, 8;) related by 

8, = S: - 2n,z, i= 1,2,3 (2) 

represent the same point on the manifold. 
Set 

T=traceA=t+iu, (31 

so that 

T= exp(i%,) + exp(i%,) + exp(i%,), (dab 

t = cos 8, + cos %2 + cos 8, = cos %1+ cos %2 + cos(%, + %?), (4b) 

u = sin 8, + sin e2 + sin 8, = sin 8, + sin e2 - sine, + e2). i4c) 

A complex T which is the trace of an SU3 matrix will be said to be in the “allowed 
region” of the T plane. This means that a set of %, exist such that (T, el, Bz. 8,) 
satisfy Eqs. (I ) and (4). 

When (T, %,, %,, (3,: satisfy these conditions, then so do 

(Texp{$in~),%,+3n~,e2+3n~,e3+3n~) 

and 

(T”, -%,, -&, -0,). 

Therefore, the allowed region in T plane is symmetric under rotations by 2x13 and 
47t/3, and under reflection through the t axis. 

The eigenangle manifold has the topology of the (2-dimensional) surface of a 
torus. To give it a concrete representation, we may consider it as a bounded region 
of the plane 

%,+8,+e,=o 

drawn in a 3-dimensional Euclidean space by coordinate axes for %, , e2, e3 I The 
boundary points in this representation are not boundary points of the manifold as 
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they are identified with other boundary points through condition (2). The 3-space is 
the union of six subspaces, one of which is defined by 0, d e2 < 8,, and the others 
by permutations of the Bi in this condition. Then the &manifold in this concrete 
representation is likewise subdivided into six regions, with boundary lines between 
regions defined by equality of a pair of the 8,. 

Now t and u are symmetric functions of the 6,, and each of these six regions of 
the Q-manifold is mapped continuously and one-to-one to the allowed region of the 
T-plane. Each point on the region’s boundary is a map of a boundary point of one 
of the six regions in the manifold and hence associated with a value 8, common to 
a pair of the 8,. Then the third angle is 2nz - 24. Therefore, 

t = 2 cos 8, + cam 24, (W 

u=2sin8,-sin28,, (5b) 

are parametric equations, with parameter 8,, 068,<2n, defining the boundary of 
the allowed region (see Fig. 1). Its shape is a cusp-triangle with the symmetry 
properties already noted. Gupta and Pate1 [3] have used graphs of this type. The 
ranges of the trace variables are 

FIG. 1. The interior of the cusp triangle is the domain of points in the complex T-plane for which T 
1s the trace of an SU(3) matrix, where T= t + iu = Trace(A). 
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To describe the boundary u = u(t) near the maximum of i, set B0 -+ 0 in Eqs. (5) 
to get 

t = 3 - 30; + o(q), 

u = 0; + o(g), 

whence 

u(t) = -k( 1 - $)3/2 f higher order terms 

in the neighborhood of t = 3. This corresponds to A near the unit matrix. 
Solving (5a) for the parameter, we get 

cos 00 = - 4 + $(3 f 2t)“Z. 

The positive square root is for the sides of the cusp triangle in Fig. 1 meeting at 
t = 3, and the negative square root for the third side. Putting these solutions into 
(5b) we get 

u=u+(t), u= -u+(t) 

for the boundary curves meeting at t = 3 and 

u=u-(t), u= -u-(t), 

for the boundary curve on the left, where 

u + (t) = [ + 2(3 + 2t)3’2 - t2 - 12t - 91 1’2, -$<1<3, !6a) 

u _ (t) = [ - 2(3 + 2t)3’2 - t2 - 12t - 91 I”, -#dtd -1. (6bJ 

Note that [u _ (t)]’ is defined for all t in ( - 2, 3) and is negative for t in ( - 1, 3 ). 
Note also that 

Then 

[U+(t)u_(t)]2= -(3-t)3(1+t). (7) 

2(3 + 2t)3’2 + t2 + 12t + 9 03) 

is an alternate to (6a) and a more practical formula for t close to 3. For example, if 
t = 2.7, calculation of u + (t) from (6a) loses more than six significant figures. 
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III. DEPENDENCE OF THE INVARIANT MEASURE 
ON THE TRACE VARIABLES 

Let u(O) be the Vandermonde determinant of the eigenvalues of A: 

1 1 1 
u(0) = exp(i0,) exp(W exp(W 

exp(28,) exp(28,) exp(2i0,) 

= [exp(iB,)-exp(i8,)][(exp(iB,)-exp(i8,)][(exp(iB3)-exp(i8,)]. 

Then 

= 2 (sin(8, - e,) + sin(8, - e,) + sin(0, - e,)l. 

Using the second form in (9), we verify that 

(9) 

We can now take over the part of &(A) depending on the unitary invariants of A 
and write it in normalized form 

so that 

s dA= 1. 

To convert to trace variables, we have 

1 1 1 1 exp( -iel) exp( -2iel) 
Iu(O)I~ = exp(ie,) exp(i0,) exp(ie,) . 1 exp( -8,) exp( -2i02) 

exp(2iQ,) exp(2iB,) exp(223,) 1 exp( - itI,) exp( -2i0,) 

3 T* (T*)‘-2T 
= T 3 T* 

T=-2T* T 3 

= -u4 - 2(P + 12t -I- 9) u2 f (3 - t)3( 1 + t) 

= [u<(t) - u’][u’- u’(t)]. 

(10) 

(11) 
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By explicit calculation from (4), 

2dtdu=2 

In transforming (10) to tract variables, we multiply by six to account for the six- 
fold mapping of O-space to T-space. The complete formula becomes 

di(f3) = di(t, u) = (2r~“)-‘~!(u’, (t) - u’)(u’- u’ (t)) dt dzr (12j 

with 

-u-(t)<u<u,(tj for -16163, 

-u+(t)dz46 --u(t) and u (t)<u<u 1 (t) 

for -i d t 6 -1. And (11) remains valid. Figure 2 shows a surface plot of the 1, 2 
distribution associated with invariant measure dp(A ). 

Question about trace distributions and other distributions of unitary invariants 
can now be posed, and sometimes answered analytically. Suppose, for example, we 
ask for the distribution G(t) dt of t = real (trace A), where A is distributed 
according to dp(A). The u-integration over (12) brings in the complete elliptic 
integrals E(k) and K(k). The formulas of Byrd and Friedman [2] are applicable. 

FIG. 2. Surface plot of di.(!. u),‘dr du, the part of the SC’(J) invariant measure dependent on the 
Irace. T= I + iu, of an SU(3) matrix. 



112 GURALNIK, WARNOCK, AND ZEMACH 

For -1 <t<3, we have 

G(t) = 2 juu;;+(') "5; ') 

= (37?-‘(U: -u2)1’2[(z2+ + 22) E(k)-u2K(k)]. 

Here, u% < 0, and the modulus k is given by 

k=k(t)=u,(u: -UC)-I’*. 

For -$<t< -1, we have 

u=u+(t) dA(t, 24) 
G(t)=2 j ~ 

u=u-(t) dt 

= (374 -‘u + [(u: + u’_ ) E(k) - 2z&K(k)]. 

In this case, 0 < ~2 < z$+ and the modulus is given by 

k=k(t)=(u< -u~)~‘~/u+. 

Figure 3 shows G(t). The maximum is 0.59072 at t = -0.527. By construction, G(t) 
is normalized to 

s 3 
G(t) dt= 1. 

- 312 

FIG. 3. Distribution of the real part t of the trace of SU(3) matrices distributed according to the 
invariant measure. 
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IV. APPROXIMATION FOR GENERATION OF STEPPING MATRICES 

To generate random stepping matrices for an SU, gauge theory Monte Carlo 
calculation, one could first consider distributions 

dA( t, U) x bias factor (= function of t ) (I41 

which bias the selection of trace variables for the random SU, matrices toward a 
neighborhood of t = 3. The bias should depend on a few adjustable parameters to 
be tuned for specific applications. The bias might be further optimized by giving it a 
u-dependence; we have not investigated this. Random sampling of the distributions 
should be easy and fast on a computer. While the expression (12) for &(t, u) is 
rather cumbersome, it admits simple approximations for such purposes. 

We suppose, for practical purposes, that the bias factor is very small for t < 0. 
Then we need to approximate dA(t, U) well for positive t only. 

First, define a normalized u variable by 

d=u/u+(t) (15) 

so that - 1~ fi 6 1 for t > -1. Then d/l takes the form 

d/l = (27~~) - ‘a(t)( 1 - ;t,‘&--$ dmdtdfi (16) 

where, recalling Eqs. (6), (7), 

~(t)=IU+/U_12=IU+U-12/1U_/4 

= (3 - t)‘(l + t)/[2(3 + 2t)3’2+ t2 + 12t j-91’ 

and 

a(t)=27 Iu!+u-)/(~-~)~ 

= 27( 1 + t)/[2(3 + 2t)3’2 + t2 + 12t + 9]1’2. 

For t > 0, (r(t) zi2 + f)1’2 varies from a minimum of 1 (for & = 0) to a maximum of 
1.035 (for zi = 1, t = 0). This 34% variation is irrelevant for Monte Carlo strategies. 
Accordingly, the second square root in (16) can be approximated by unity. The fac- 
tor a(t) is a well-behaved function for positive t whose trend is as follows: 

a(t)/a(3) = 1.000 for t = 3, 

= 0.906 for t = 2, 

= 0.781 for t=l, 

= 0.590 for t=O. 

Therefore, in place of (14), we could generate distributions of the form 

dF( t) J’?=$ dh, (17) 
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where the slow variation of cr(r) is absorbed into the tunable variation of F(r). A 
specific F(t) is proposed in the next section. 

V. A BIASED DISTRIBUTION FOR t= REAL (TRACE A) 

In line with the preceeding discussion, we could begin a generation of a stepping 
matrix A by generating two real variables li and t according to distributions 
(1 - G*) ‘I2 dG and dF(t), respectively, where dF(t)/dt goes like (3 - r)3 near t = 3. If 
the (3 - t)3 factor is not present, too much computer time and Monte Carlo sweep 
time may be expended on stepping matrices so close to the identity that the steps 
move too slowly. The approach is similar to that set forth in [ 1 ] for SU(2) stepp- 
ing matrices. 

Assume that the t-distribution is normalized to 1, and let t, 0 be its average and 
standard deviation: 

i 
dF(t) = 1, J’ t dF( t) = i i 

( t2 - t7) dF( t) = 0’. (18) 

We seek a prescription for F(t) which allows i and CJ (and perhaps some shape 
parameters) to be preset, and which can still be programmed efficiently on a com- 
puter. One can then seek to optimize the choices of i, G, and any other parameters 
by numerical experiments, with physical judgments guiding extension of results to 
lattices of different dimension and different spacing. 

Let Y and s be selected randomly from the uniform distribution on (0, 1). Let b, 
w, and n be real positive parameters, as specified below. Let t be determined by 
solving 

s = exp{ - [(3 - t)/(b + w?)]~}. (19) 

This defines t as a variable on ( - co, 3) but in practice, values of t less than - 1 will 
occur infrequently and can be dropped, or reset to t = -1. 

Then the effective t-distribution is dF(t), where 

Fo=~r’=o exp( - [(3 - t)/(b + WY”)]~) dr. 

This satisfies the first condition of (18) and dF/dt goes like (3 - t)3 near t = 3. We 
define two constants related to the r function 

s 
0 

Cl = zd[exp( -z”)] = r(s) = 0.90640 24771 
02 

and 

c* = 1” z2d[exp( -z”)] = &,& = 0.88622 69255, 
cc 
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then 

The distribution becomes more sharply peaked in the neighborhood of t = i as I? 
increases, and has a longer tail. Reasonable shapes are given for, e.g,, 1 6 n < 10. 

Given values of i and cr, Eqs. (20) can be solved to tix w and then b: 

w2= g2-(C2-C:)(3-j)2 

i 
(2n+l)(n+1)” 

c: c7n2 q (21ai 

b = (3 - t‘)/cl - w/(n + 1). (21’01 

For a given i in this scheme, there is a minimum value of CT, namely the value that 
makes w=O in Eq. (2la). 

Finally, when t and tz are generated (and the rare events t c -1 are discarded), 
then Eq. (8) and u=u+(t)z2 yield U. 

Figure 4 shows illustrative trace distributions with i= 2.0, several CJ values, and 
n = 1. Figure 5 shows the effect of changing n. 

Eigenangles from Trace Variables 

We must also determine (efficiently) the eigenangles or, better, the pairs 
(cos 8,, sin 0,) from t and u. The characteristic equation 

det(xl-ii)= [x-exp(i0,)][x-exp(i8,)][x-exp(iB,)] 

=x3-Tx’+T*x-l=O 

can be solved for the 8, when T is given. A more direct approach is to form and 
solve a real cubic equation whose roots y, are trigonometric functions, e.g., 
y, = sin 9,, i = 1, 2, 3. Then, the sum of the roots is u. From 

and 

i* + u2 = 3 + 2 C (cos 8, cos 0, + sin 0, sin Q,) 
1<1 

t= c cos(8,+6,)= c ( cos 19, cos 19, - sin 8, sin S,), 
l<J i<J 

an expression for C,, , sin Oi is obtained. Also 

tu = + C sin 26, + C sin(8, + 19,) 
I I<1 

= -2 sin C3r sin 0, sin 8, - 24, 
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,- 

CODE GX3A 

T-WE I-50 N E w 

NRTGEN 9 2.000 0.281 1 1.103 0.000 ~ 

I- MtlTGEN 9. 2.000 R.400 1 0.579 l-049.- - - 

RATGEN 9 2.000 0.500 1 0.342 1.523 ------------ 

,- NRTGEN 9 2.MO 0.600 1 0.127 1.952 - - - 

FIG. 4. t-distributions generated by the algorithm for SU(3) stepping matrices, with average trace 
t= 2.0, several standard deviations C, and shape parameter IZ = 1. 

CODE GXJA 

T-AK T-SO N E w 

MRTGEN 9 2.000 0.600 I 0.127 1.952 - 

fWTGEN9 2.000 O..KOO 3 0.606 1.987 ------ ----- 

MRTGEN 3 2.000 0.600 8 0.813 2.613 - - - 

FIG. 5. t-distributions for i= 2.0, showing the effect on shape of different n-values. 
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where the last step depends on Eq. (1). Then the desired equation is 

y3 + uy* + gt* - 2t - 3 + u2) y + 4u( 1 + t) = 0. 

Let y1 be any angle such that 

cosy,= 
-u[u’+ 9(3 -t- t)(l + t)] 
[u’ + 3(3 - t)( 1 + t)]3’2 . 

(32) 

Let y2 = y 1 + 277, y3 = 7 1 + 4~. Then the Cardan solution to the cubic in y is 

y, = sin 5, = $ff + &[u’ + 3(3 - t)( 1 + f)] *‘* cosffy,), i= 1, 2, 3. (23a) 

In addition, again from (4), 

sin 5, - sin e2 - sin 5, 
1 + cos 5, + cos 5, + cos 5, 

2 sin(i5,) cos(f5r) - 2 sin $(e2 + 5,) cos $(5, - 5,) = 
2 cos(f5f) + 2 cos $(5* + 5,) cos $(5, - 5,) 

1 -case, 
= tan($B,)= sin 5 . 

1 

Therefore, for any 5, and without computation of a square root, 

cos8,=1- 
sin 8,(2 sin Bi - U) 

l+t ’ 

and, if the eigenangles themselves are desired, 

(23b) 

When T= f + iu is given and 1 + t # 0, these equations are efficient prescriptions 
for the sines and cosines of the eigenangles, and the angles themselves, without 
ambiquity of sign. 

In the special case 1 + t = 0, let 5,) be any angle satisfying sin 5 1 = 4~. Then the 
angles can be taken as 5,, (n - 5,), and rc. The sines and cosines are, respectively, 
sine,, sine,, 0, and COST,, -cos5r, -1. 

VI. SUMMARY OF THE ALGORITXM 

The steps of the algorithm to generate a trace-biased but otherwise invariantly 
distributed ensemble of SU(3) matrices with prescribed trace average t, trace stan- 
dard deviation 6, and shape parameter n are here assembled in the proper sequence, 
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In what follows, r, s, and subscripted rs are random variables sampled from the 
uniform distribution on (0, 1): 

(1) Calculate b and w from Eqs. (21). 
(2) Choose r and s randomly on (0, l), and calculate t from Eq, (19), i.e., 

t = 3 - (b + wY)( --log s)lj4. Any t less than - 1 should be dropped or redefined to 
be -1. 

(3) Choose Zz randomly from the distribution (1 - ti2)lj2 dh. It is probably 
adequate to replace this by (1 - zi)1/2 dzi. Then we can set d( 1 - 2i)3/2 = drl, 
zi= 1 - (Y,)*‘~= 1 - [Max(r,, rb, r,)12. Then set zi + L- li; the two signs are 
equiprobable. 

(4) Calculate u = u + (t)d and sin t?,, cos 8,, i = 1, 2, 3, from Eqs. (8) (22) and 
(23). Then apply a random permutation (one of the six permutations on three 
objects) on the ordering of the 8,. If this is not done, the sin 8, obtained by the 
solution to the cubic equation as given above will not be randomly ordered in 
magnitude. The diagonal matrix D(0,) is not known. 

(5) Set lcIzl = 2m2, $31 = 2nr3, ti3* = 2nr4. Also, p21 = Max(r,, r6), 
&r = Max(r,, r 8, r9, rd, and P32= Max(r,, , rlJ. For each p, calculate the com- 
plement: p = (1 - (p) ) 2 ‘j2. The ps and $s will be distributed according to dv(p, w). 

(6) Set v,, =P31P21, Vzl = 031 p21 exp(i$21)y V31 = p31 expW3A 
v32 = P31P32 exp(iti32)2 v33 = P31P32. 

(7) Utilize the orthogonality of the first and third columns of V and the 
cross-product relations for the rows of V to get the remaining elements of V, 
specifically, 

V13=(V,*,V,*,- hlGv33)(P31)-2~ 

v23=(-v,,v,*,- ~2,~,*,~33)(~31)-2, 

VI2 = (V23 v31 - v21 v33)*, v22 = (V33 v,, - v31 v131*. 

(8) Calculate A = V- ‘D(0) V. This can be rephrased (with Z= unit matrix) as 

A = V-‘[D(O)-Zexp(i0,)] V+Zexp(iG,). (24) 

If the first two rows of A are calculated by Eq. (24) and the third row calculated 
from A, = (A, + A,)*, the computation of A is shortened, and the computations of 
V,, and V,, are unnecessary. 
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